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Large-eddy simulations of a cavity configuration yielding a mean flow that exhibits
spanwise asymmetry are carried out. Results from the computations reveal that the
asymmetry is due to a bifurcation of the whole flow field inside the cavity. It is
demonstrated that the bifurcation originates in an inviscid confinement effect induced
by the lateral walls. The branch of the bifurcation can be selected by slightly altering
the incoming mean flow. Further investigations show that underlying steady spanwise
modulations of velocity are amplified under the influence of the lateral walls. The
modulation of the streamwise velocity component has the largest energy content
and its dominant wavelength contaminates both vertical velocity and pressure. Com-
plementary to these linear interactions, nonlinear energy transfers from streamwise
velocity to pressure are also found. A transient analysis highlights the stiff transition
from a symmetrical two-structure non-bifurcated flow to a stable unsymmetrical
one-and-a-half-structure bifurcated flow. The switch to the bifurcated flow induces
an alteration of the Rossiter aero–acoustic loop yielding a change in the dominant
Rossiter mode and the appearance of a nonlinear harmonic of the first mode.

1. Introduction
1.1. Context of the study

Since the pioneering studies of Roshko (1955) and Karamcheti (1955), compressible
flows over rectangular cavities have been known to exhibit strong velocity and
pressure oscillations. Rossiter (1964) was the first to point out the key role of an
aero–acoustic loop in the origin of these oscillations, similarly to many configurations
exhibiting a shear layer impinging on an obstacle (see Rockwell & Naudascher 1979,
for details). This description leads to the definition of a modal semi-empirical model,
referred to as the Rossiter model, which has been successfully utilized to predict the
discrete frequencies of the oscillations. Following Rossiter (1964), numerous studies
have been devoted to cavity flows. The emphasis was mainly put on the improvement
of both the understanding of the coupling and the refinement of its modelling, as
described in the review articles by Rockwell & Naudascher (1978), Komerath, Ahuja &
Chambers (1987) and Colonius (2001). Because the mixing layer and the pressure
waves involved in the oscillations of the flow can be modelled with some success
as two-dimensional to a first approximation, little attention has been paid to the
influence of the spanwise direction on the structure of the flow inside the cavity. This
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restriction was supported until recently by some experimental (Ahuja & Mendoza
1995; Tracy & Plentovich 1997) and numerical Rizzetta (1988) studies demonstrating
limited influence of the cavity width upon the level and frequency distribution of
the Rossiter pressure modes. However recent advances in velocity measurements and
in turbulence simulation tend to show that velocity field at least can be strongly
modulated over the whole cavity because of the lateral boundaries. The purpose of
this paper is to explore numerically the possible origin of such three-dimensional
effects by focusing on a case strongly departing from two-dimensionality as described
in the experimental study of a subsonic shallow cavity flow by Forestier, Geffroy &
Jacquin (2000). Large-eddy simulation (LES) is used for such computations because
of the quite large Reynolds number of the flow and the three-dimensional effects that
are sought. Moreover, LES has been proved to accurately reproduce the features of
compressible cavity flows found in experimental data, see Larchevêque et al. (2003)
and Larchevêque et al. (2004).

1.2. Three-dimensionality in cavity flows

Three-dimensional effects inside a cavity were first reported by Maull & East (1963)
for low-speed water flows. Wall visualizations based on viscous coating show the
existence of stationary periodical cells in the spanwise direction whose number and
size vary with the width of the cavity. An interesting point to note is that some of
the pictures exhibited a non-symmetrical pattern with respect to the half-span line
(or midpoint) of the cavity. Spanwise modulations have also been found inside the
mixing layer by Rockwell & Knisely (1980). Visualizations using hydrogen bubbles
reveal that, as well as the wavelength related to the classical ribs in the later stage of
the layer, a larger wavelength roughly equal to the separation distance between two
rolls is found upstream. The authors state that the large-scale recirculation vortex
inside the cavity could be partly responsible for this spanwise modulation.

Indirect evidence of the three-dimensional nature of high-Reynolds-number cavity
flows is found when looking at the ‘wake mode’ highlighted by Gharib & Roshko
(1987) for a low-Reynolds-number axisymmetric shallow cavity. This specific mode of
oscillation is due to the periodical ejection of part of the large recirculating vortices
out of the cavity resulting in a huge increase of the drag. Two-dimensional direct
numerical simulations (Rowley, Colonius & Basu 2002; Gloerfelt, Bailly & Juvé 2000)
and Reynolds-averaged computations (Shieh & Morris 2000) were able to reproduce
this phenomenon, while in their three-dimensional counterpart the classical ‘shear
mode’ induced by the aero–acoustic coupling was recovered (see Gloerfelt et al. 2002,
for details). Suponitsky, Avital & Gaster (2005) recently demonstrated that in a single
computation transition from the ‘wake mode’ to the ‘shear mode’ can be achieved by
enforcing the three-dimensionality of the flow by means of added three-dimensional
perturbations. In a related way, Larchevêque et al. (2003) found that in an LES of
a deep cavity flow with a spanwise homogeneous direction a reduced width of the
computational domain induces a spurious recirculation vortex and alters the pressure
spectra.

These observations tend to demonstrate that some intrinsic three-dimensional
phenomena are at play inside the cavity that are complementary to the mixing layer–
pressure wave coupling. Three-dimensional effects have been theoretically identified
for other recirculating flows such as lid-driven cavity (Albensoeder, Kuhlmann &
Rath 2001) and backward-facing step (Barkley, Gabriela m. Gomes & Henderson
2002).
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Figure 1. Geometrical description of the cavity within the wind tunnel. The rectangle located
on the upstream wall of the cavity marks the location of the pressure sensor for both
the experiments and the simulations. Length-to-depth ratio: L/D =2. Length-to-width ratio:
L/W = 0.42.

For the sake of completeness mention should also be made of the spanwise pure
acoustic modes encountered in compressible cavity flows by Larchevêque et al. (2004)
although their energy content is several orders of magnitude lower than that of the
aero–acoustic Rossiter modes.

1.3. Configuration studied and experimental results

The geometry of the cavity and the flow parameters used in the present numerical
study correspond to the experiments by Forestier et al. (2000). These authors have
performed measurements of a flow with M = 0.8 over a shallow cavity with ratio of
length L to depth D equal to 2. The length of the cavity is 50 mm resulting in a
length-based Reynolds number value of ReL =8.6×105. The cavity was located in the
ONERA S8B wind tunnel of cross-section 120 mm × 100 mm as described in figure 1,
yielding a length to width W ratio of 0.42.

The measurement database includes fast-schlieren pictures, pressure spectra and
mean as well as phase-averaged velocity fields in the vertical half-span and horizontal
aperture planes obtained from laser Doppler velocimetry. The experimental apparatus
and set-up were similar to the ones used in the deep cavity study by Forestier,
Jacquin & Geffroy (2003), the main difference being a shift of the pressure sensor
in the upward direction because of the decreased depth of the cavity. Details on the
set-up can be found in that reference.

Pressure measurements and schlieren pictures reveal that the flow oscillates under
the influence of the aero–acoustic coupling described by Rossiter. Moreover the
dominant first mode of oscillation has frequency and level almost the same as the
ones observed in the deep cavity by Forestier et al. (2003). Similarity in frequencies
also occurs for higher modes. On the other hand, velocity fields differ noticeably: the
oscillation loop only involves one vortex per cycle compared to the three vortices
found for the deep cavity configuration. The most striking difference is found when
looking at the spanwise distribution of velocity. While inside the deep cavity the
flow away from the lateral boundary layers is close to homogeneity in the spanwise
direction, the flow field related to the shallow configuration is strongly modulated
over the whole width of the wind tunnel. Moreover, the spanwise velocity patterns do
not exhibit symmetry with respect to the geometrical symmetry plane of the set-up.

This intriguing feature was the main motivation for performing LES of the con-
figuration. Such computations take advantage of the knowledge gained from LES
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Label Subgrid model Spanwise boundary condition Initial forcing Inflow forcing

MIL MiLES Wall No No
MS Mixed scale Wall No No
SMS Selective mixed scales Wall No No
MILil MiLES Wall Left No
MILir MiLES Wall Right No
MILl MiLES Wall No Left
MILr MiLES Wall No Right
MILs MiLES Slip wall No No
MILp MiLES Periodicity No No

Table 1. Computational models.

previously performed by Larchevêque et al. (2003) related to the deep cavity case
described in Forestier et al. (2003).

1.4. Outline of the article

The article is organized as follows: the numerical method and the parameters of the
computations are briefly described in § 2. The meticulous validation process based on
the use of the extensive experimental dataset of Forestier et al. (2000) is detailed in
§ 3. The last section is dedicated to the characterization of the spanwise asymmetry
of the flow with discussions on its origin (§ 4.1), the influence of the inflow and lateral
boundary conditions (§ 4.2) and an analysis of the space and time scales, both steady
and unsteady (§ 4.3). Finally the major findings of the paper are summarized in § 5.

2. Numerical methods
The numerical method used for the present simulations is similar to the one used

for the successful LES of the deep cavity configuration presented in Larchevêque
et al. (2003). Therefore, it will not be detailed in the present paper. Two classes of
computation have been carried out. The first one, classically referred to as MiLES, is
based on an implicit subgrid modelling through the upwind optimized AUSM-type
scheme proposed in Mary & Sagaut (2002). The second one relies on a classical
LES with a second-order-accurate centred scheme coupled to the mixed-scale subgrid
model in its standard or selective form (see Sagaut 2005 and Lenormand et al. 2000
for details). An hybridization with the upwind scheme is performed through the
wiggle sensor proposed in Mary & Sagaut (2002) to avoid odd/even oscillations
induced by purely centred schemes. The modelling strategies adopted in each of the
simulations that have been carried out are listed in table 1 along with the labels used
hereafter. Time integration is carried out by means of a standard third-order compact
Runge–Kutta scheme.

Non-reflective boundary conditions are highly desirable for cavity flow simulations
in order to prevent alteration of the aero–acoustic resonant loop. Moreover, realistic
velocity profiles at the upstream edge of the cavity are required as a key parameter
to accurately predict the growth of the mixing layer. A characteristic-based inflow
condition coupled with synthetic turbulence generated through the addition of space-
filtered and time-correlated random fluctuations, as described in Sagaut et al. (2004),
is retained to fulfil these requirements. Both first- and second-order velocity statistical
moments are set according to the experimental data. A subsonic characteristic-based
condition is used at the outflow plane. A two-layer instantaneous wall function is
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�x+ �y+ �z+ Cells
Cells (streamwise) (normal) (spanwise) within δ0

ω �t

39750 × 144 (spanwise) 80 ∼ 300 70 ∼ 90 10 ∼ 20 10 1.4 × 10−7 s

Table 2. Typical cell characteristics and time step.

(a) (b)

Figure 2. (a) Experimental fast schlieren view of Forestier et al. (2000) using a vertical knife
and (b) filled isolevels of ‖∇ρ‖ from the SMS computation.

used to make the computations feasible despite the small thickness of the boundary
layer and the large dimensions of the wind tunnel that need to be discretized. For
some computations frictionless wall and periodic boundary conditions have also been
used.

The computational mesh is designed using the finest grid used for the deep cavity
computation by Larchevêque et al. (2003) as a model. The inlet plane is located one
cavity length L upstream of the cavity whereas the outflow boundary is 4L from
it. As illustrated by figure 1, the upper wall of the wind tunnel is included in the
computational domain and the lateral walls and their boundary layers are also taken
into account because of the spanwise inhomogeneity of the flow revealed by the
experiments. This yields a grid of nearly 6 millions cells whose features are described
in table 2. According to the previous computations presented in Larchevêque et al.
(2003), the number of cells contained in the vorticity thickness measured at the mouth
of the cavity is more than large enough to allow an accurate capturing of the shear
layer dynamics.

For all the computations, statistical data have been averaged over at least 50
periods of the first mode of oscillations.

3. Validation
Wind-described tunnel experiments in Forestier et al. (2000) have shown that for

the present cavity the aero–acoustic Rossiter loop is the most energetic process.
Therefore it is of importance to check the accuracy of its description by the numerical
simulations. The use of strioscopic views is a qualitative way to do so. A comparison
between pictures from the experiments of Forestier et al. (2000) in figure 2(a) and from
the SMS simulation in figure 2(b) at a similar phase time shows that this computation
is able to predict both the pressure wave pattern and the large vortex entering the
cavity, here located near its mid-length point. Moreover the phase relation between
the two phenomena is accurately reproduced. The MIL simulation yields a similar
agreement with the experimental data while the MS one exhibits a lower density of
pressure waves in the channel over the cavity.
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Figure 3. Power density spectra of pressure in sound pressure level (SPL) on the upstream wall
at the location shown in figure 1: (a) experiment, (b) MIL, (c) MS and (d) SMS computations.

The analysis of the power spectra obtained from a pressure sensor located on the
front wall of the cavity quantitatively confirms these trends. The MS spectrum of
figure 3(c) fails to reproduce the details of the experimental one plotted in figure 3(a).
The frequency of the main oscillating mode is reasonably correctly predicted but its
power level is underestimated by 20 dB. Moreover, multiple spurious harmonics of the
main peak are found. Similar harmonics were found experimentally and numerically
for the L/D =0.42 cavity case. It was demonstrated by Forestier et al. (2003) and
Larchevêque et al. (2003) that they originated from the coalescence of incoming and
reflected waves inducing a low density of pressure waves similar to those observed
for the MS computation. It is worth noting that the subgrid model of the MS
computation results in turbulent viscosity levels higher than in the other simulation
of the present study. However the alteration in the amplitude of the first mode is too
large to be explained only by a direct dissipative effect induced by a larger turbulent
viscosity on the propagating pressure waves. This is supported by the fact that the
experimental schlieren picture of figure 2 is free from coalescence of pressure waves.
This means that the aero–acoustic phase relation and, by extension, the aero–acoustic
loop are different in the MS computation compared to the experiments.

Unlike to the MS case, MIL and SMS spectra plotted in figure 3(b, d) are in good
agreement with the experiments up to St= 5 with an error lower than 5 dB. The main
discrepancy is an underprediction of the first Rossiter mode and its harmonics while
the second Rossiter mode is overpredicted. Note that, owing to the large difference
in sampling time between simulations and wind-tunnel experiments and the possible
very-low-frequency modulations of the Rossiter modes encountered in cavity flows,
theses discrepancies are not necessarily relevant.

To check the influence of the post-processing step, spectra are computed from parts
of the experimental signal restricted to the same sampling duration of 50 periods of
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St (exp.) St (comp.) SPL (exp.) SPL (comp.)
Mode St (th.) %

1 0.353 100 0.362 0.365 0.368 0.371 0.372 159.2 162.6 168.8 156.4 159.6
2 × 1 0.706 100 0.726 0.728 0.735 0.744 0.740 142.5 146.8 150.8 139.4 139.4

2 0.745 67 0.789 0.803 0.811 0.787 0.801 120.5 125.5 136.5 136.8 134.0
3 × 1 1.059 88 1.087 1.092 1.104 1.078 – 114.6 122.3 126.0 115.0 –

3 1.136 18 1.152 1.164 1.202 1.153 1.171 110.3 113.8 119.2 119.9 120.2
4 × 1 1.412 94 1.451 1.455 1.470 1.485 1.478 117.2 121.5 128.4 127.1 126.9

4 1.528 13 1.507 1.522 1.542 1.568 – 110.8 114.8 118.7 115.4 –

Table 3. Characteristics of Rossiter modes and their ith harmonics denoted by (i + 1) ×.
Theoretical Strouhal number St values are obtained from the semi-empirical Rossiter (1964)
formula St =(n − γ )/(M + κ−1) where n is the mode number and γ and κ are parameters
varying with the L/D ratio. Following Larchevêque et al. (2003), values of γ = 0.098 and
κ = 0.57 are retained for L/D = 2. Experimental values are obtained by testing all the
realizations of a 50-period signal extracted from the full 7500-period signal. Only realizations
for which modes exhibit peaks whose amplitude is 4 dB higher than the background level
are retained, the percentage of such realizations over all the realizations being given in the
% column. For experimental values, left and right numbers correspond to the 99 % lower
and upper boundaries of the density probability functions, the central ones being the most
probable values. The first and second computational values are respectively from to the MIL
and SMS simulations.

the first Rossiter mode as for the computational data. Probability density functions
of frequency and amplitude are extracted for the various modes from all possible
spectra to allow refined comparisons between the experiments and the two MIL
and SMS computations. Results are summarized in table 3 by displaying the most
probable values and the bounds of 99 % probability interval for the most energetic
pressure modes identified in the spectra, namely the first Rossiter mode, its fourth
first harmonics and the next three Rossiter modes.

It is seen from table 3 that the amplitudes of the pressure modes are strongly
modulated over time with variations over 10 dB, especially for the second Rossiter
mode which even becomes indistinguishable for about one third of the 50-period
realizations. Taking into account the statistical bias induced by theses variabilities and
the limited duration of the computations, it is found that the amplitudes predicted by
the computations mostly fit the 99 % probability bounds although the underprediction
of the amplitude of the first Rossiter mode and its first harmonic is slightly improved.

One may argue that because of the low-frequency competitive energy exchange
between modes highlighted by Kegerise et al. (2004), amplitudes of modes may
be correlated, therefore preventing selection of a realizable spectra by arbitrarily
choosing amplitudes within probability bounds for each mode. The experimental
spectra computed using 50 periods, which are the closest to the ones from the
simulation when considering the three most energetic pressure modes, are extracted to
alleviate this drawback. The resulting spectra are plotted in figure 4 jointly with their
counterparts from simulations and the errors in the amplitude of the three dominant
peaks are found to be lower than 2 dB. Consequently, it is concluded from figures 3, 4
and table 3 that both the MIL and SMS computations are able to accurately
reproduce the Rossiter loop, making them appropriate for the physical analysis to
come. The very low-frequency behaviour is beyond the scope of the present paper.

A similar better accuracy of the MIL and SMS simulations than the MS one is
found by looking at the streamwise velocity profiles in the mid-span plane plotted in
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Figure 4. Power density spectra of pressure on the upstream wall at the location shown
in figure 1: comparison between spectra obtained from computation (solid line) and the
experimental spectra of the 50-period realizations best fitting the three most energetic peaks
(circles); (a) MIL, (b) SMS.
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Figure 5. Velocity statistics in the mid-span plane of the cavity: (a) longitudinal mean velocity,
(b) vertical mean velocity, (c) longitudinal fluctuating velocity, (d) vertical fluctuating velocity
and (e) longitudinal–vertical Reynolds stress: −−−−−, MIL simulation; · · · · · ·, MS simulation;
− − −, SMS simulation; �, experiment.

figure 5(a). They indicate that the growth rate of the shear layer is underestimated
in the MS simulation whereas MIL and SMS computations are in good agreement
with the measurements except for a slight upward shift of the mixing layer centre.
On the other hand, vertical velocity profiles are predicted equally well by all three
simulations as seen in figure 5(b).
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The turbulent fluctuations profiles of figure 5(c, d) are also in good agreement
with the experiment for the inner part of the mixing layer. However levels are
underpredicted inside the cavity from one-third of its length to the vicinity of the
downstream wall. It is of interest to note that the double/single bumps in the
experimental streamwise/vertical velocity profiles match the theoretical ones obtained
from the mixing layer vortex model of Stuart (1967). A study of the phase-averaged
data of Forestier et al. (2000) reveals that the higher levels found experimentally are
due to the lone large vortex of the aero–acoustic loop gradually entering the cavity.
Noting that this vortex is present in the simulations as seen in figure 2, it is suggested
that the vortex is less coherent because of a greater three-dimensionality, as observed
though in a milder form by Larchevêque et al. (2003) in the previous deep cavity
computations.

The streamwise–vertical Reynolds stress profiles of figure 5(e) exhibit an overall
good agreement between the experiment and the computations. Maximum levels are
underpredicted near the half cavity length but are otherwise accurately predicted,
being unaffected by the convection of the vortex as predicted by the model of Stuart
(1967) that yields a zero cross-stress.

Although the velocity field is predicted well in the centre vertical plane the ability
of the computations to reproduce the spanwise non-symmetric patterns has to be
checked. Streamwise velocity and two-dimensional turbulent kinetic energy (TKE)
maps of the horizontal aperture plane of the cavity are therefore presented in
figure 6(a–d ). They show that all the computations capture the quite complex highly
non-symmetrical features of the flow though in an inverted form. Note that the flow
fields from computations in figure 6(b–d ) have been inverted with respect to the
vertical plane y/L =1.2 to make direct comparison with experimental results easier.
A comparison of experiments and simulations shows that the streamwise velocity
values are slightly underpredicted in figure 6(b–d ) because of the aforementioned
slight upward shift of the mixing layer.

The turbulent kinetic energy maps displayed in the right-hand parts of figure 6(a–d )
show a similar inversion of the asymmetrical structure between the experiments and
the three computations. Moreover, the low-mean-velocity regions also exhibit high
TKE levels. This suggests that these areas correspond to a vertical extension of the
recirculation zone beyond the cavity.

Finally note that the MS plots in figure 6(c) exhibit a spanwise structure bear-
ing some similarity with those in MIL and SMS computations despite marked
discrepancies in the pressure spectrum. This suggests that the asymmetry of the mean
flow field may not be directly related to the aero–acoustic loop.

4. Asymmetry of the flow
4.1. Origin

It has been demonstrated in the previous section that the present computations
are able to reproduce the asymmetry observed in the wind-tunnel experiments.
Consequently this feature does not originate in flaws in the experimental set-up
and therefore remains to be explained. The explanation is found in a preliminary LES
that yielded a spanwise form of the asymmetry that was reversed compared to the
three computations described in § 3.

A comparison between the first- and second-order statistics respectively coming
from the preliminary simulation and from the SMS one shows that the two three-
dimensional flow fields are mirror images of each other, inducing similar velocity
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Figure 6. Streamwise velocity (left figures) and two-dimensional turbulent kinetic energy
(right figures) maps in the horizontal aperture plane of the cavity; (a) experiment, (b) MIL,
(c) MS and (d) SMS computations. Note that maps (b) to (d) have been inverted in the
y-direction according to the formula y ′/L = 2.4 − y/L.

profiles in the half-span vertical plane of figure 5 and reversed mean flow patterns in
the horizontal plane of figure 6. It should be stressed that these two computations
rely on the same computational parameters, including the mesh, numerical method
and boundary conditions, with the exception of the turbulent fluctuations added to
the mean velocity profile at the inflow plane. The fluctuations differ in their time
series although their first- and second-order statistics are identical, implying that they
are equivalent in a statistical sense. Statistically equivalent systems resulting in mirror
image pairs are in fact the distinctive sign of a symmetry-breaking fork bifurcation.

4.2. Sensitivity to external constraints

Because of the spanwise symmetry of both the geometry and the mean boundary
conditions, the two mirrored forms of the bifurcated flow field should be equally
probable so as to yield the required spanwise symmetry for ensemble-averaged
data over independent multiple realizations. However the experimental measurements
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that were collected and averaged over several measurement sessions do exhibit a
marked asymmetry. This implies that there are either transient or spatial asymmetrical
imperfections in the wind-tunnel flow field that always result in selecting the same
branch of the bifurcation.

Auxiliary computations have been carried out to investigate the sensitivity of the
bifurcation to various external constraints. Because the agreement of MIL simulation
with the experimental measurements is similar to that of the SMS, all the computations
described hereafter are carried out using the MiLES model in order to save
computational time. Note that all these simulations rely on the same time series
of inflow turbulent fluctuations as the MIL one for consistency reasons. The details
of each of the computations are summarized in the five last lines of table 1.

The influence of asymmetrical history effects on the bifurcation is evaluated by
altering the initial condition. The symmetry of the initial velocity profile u0(y, z) in
the channel above the cavity is broken by adding a 1 % sinusoidal variation of the
streamwise velocity component in the spanwise direction according to the formula:

u0(y, z) = u0
sym(y, z) × fantisym(y) = u0

sym(y, z)

[
1 ± 10−2 sin

(
2πy

W

)]
, (4.1)

with u0
sym(y, z) the fully spanwise-symmetric initial velocity field used in the previous

computation. Two computations, denoted MILir and MILil , are carried out starting
from two antisymmetric initial flow fields. They are stopped after about 20 periods
once it is obvious from the statistics that both of them yield the same pattern as for
the previous MIL computation.

Next the possible effect of a spanwise inhomogeneity of the incoming flow field is
addressed. The MILr/MILl simulations rely on a right/left permanent alteration of
the mean inflow velocity profile using the same 1 % antisymmetric modulation as for
the cases with initial condition forcing. The right-hand forcing corresponds to a −
sign in the antisymmetric function of equation (4.1) whereas the left-hand forcing
is obtained using the + sign. Comparison between figures 7(a) and 7(b) shows that
the flow fields resulting from MILr and MILl computation are antisymmetrical. This
demonstrates that a constant low-amplitude asymmetry of the velocity as possibly
found in wind tunnels allows the branch of the bifurcation to be selected.

A frictionless wall is substituted for the no-slip lateral walls in the MILs simulation
in order to evaluate the influence of the lateral boundary layers on the bifurcation.
Figure 7(c) shows that the spatial flow pattern remains almost unaltered even in
the vicinity of the lateral wall, demonstrating that the bifurcation process does not
originate in viscous effects induced by these walls.

Finally the lateral walls are totally suppressed and replaced by a periodic boundary
condition in simulation MILp . Obviously the bifurcation process can no longer be
sustained with such a boundary condition. The plots of figure 7(d) nonetheless reveal
that a steady spanwise modulation of the flow still exists. Its amplitude is reduced
compared to cases with bifurcation but the streamwise location of the maxima remains
almost identical. The characteristic wavelength of this spanwise modulation is equal
to half the width of the cavity and therefore is far too large to be related to transverse
secondary instability of the mixing layer. An auxiliary conclusion is that, in flows
with a periodic boundary condition, the computation of statistical averages over the
periodic direction must be considered with great care since periodicity does not imply
that the mean flow has no gradient in this direction.
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Figure 7. Streamwise velocity (left part) and two-dimensional turbulent kinetic energy (right
part) maps in the horizontal aperture plane of the cavity: (a) MILr , (b) MILl , (c) MILs and
(d) MILp computations.

Although the origin of the spanwise flow pattern is not clearly established, the
steady structures observed in the MILp computation reveal that the existence of
lateral walls amplifies and constrains an underlying spanwise modulation of the flow
to ultimately result in the bifurcation process. The next section is devoted to the
analysis of the characteristic length and time scales of the bifurcated flow.

4.3. Characteristic scales

4.3.1. Mean flow analysis

The only available experimental velocity measurements in an horizontal plane
correspond to the aperture of the cavity and consequently roughly to the centre of
the mixing layer. It is therefore difficult to determine from them if the bifurcation is
related either to only the mixing layer or to the recirculating flow inside the cavity. The
vortical structures educed from the MILr and MILl mean flow field by means of the
Q criterion (Hunt, Wray & Moin 1988) are shown jointly with the mean friction lines
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Figure 8. Mean friction lines and vortical structures educed using Q criterion of Hunt et al.
(1988) with isosurfaces Q = 2U 2

∞/L2: (a) MILr and (b) MILl simulations.

in figure 8 to clarify this point. The plots reveal that the non-symmetrical pattern due
to the bifurcation extents well beyond the mixing layer and is fully enantiomorphic.

The flow field inside the cavity exhibits the highest level of spanwise asymmetry.
The main recirculation tube in the vicinity of the downstream wall is made slightly
wavy and a large arch-shaped vortical structure that spans over more than half of the
width of the cavity is found for 0.1 � x/L � 0.75. Note that selecting a positive Q level
half that in figure 8 shows an additional weaker, semi-arch-shaped structure of width
roughly equal to W/4 that fills part of the remaining free span space. The semi-arch
leans on the span wall, resulting in the skin friction line focus seen on the background
wall in figure 8(b). The friction line arrangement on the lateral walls reveals that
the mixing layer is deflected upward near the wall closest to the full-arch structure,
presumably because of blocking effects due to this structure. The effect is strong
enough to induce on this side a separation of the flow before the upstream corner.
Corresponding, the wake structures beyond the downstream corner are weakened. It
should be noted that the friction line pattern on the floor of the cavity bears some
resemblance to some viscous coating visualizations by Maull & East (1963) related
to incompressible cavity flows.

An analysis of sole figure 8 yields crude estimations of the length scales of the flow
in the spanwise direction. One way to obtain a more accurate evaluation of these
length scales is to perform spanwise space Fourier transforms of the mean flow field
inside the cavity. The spanwise spectra are computed using the Lomb (1976)–Scargle
(1982) method for unevenly spaced samples because of the clustering of the mesh
near the lateral walls.

The method is used to obtain the longitudinal evolution of spanwise spectra along
the line z = L/4 = D/2 roughly corresponding to the horizontal symmetry plane of
the mean structures highlighted in figure 8. Evolutions are displayed for MIL, MILs

and MILp computations respectively in figure 9(a–c). Streamwise velocity u, spanwise
velocity v, vertical velocity w and pressure p spanwise spectra are plotted for each
case. Note that SMS computation spectra are not shown here because of their
similarity with MIL simulation ones.

Highest spectral densities are found for the streamwise velocity near x/L =0.45.
Each computation nonetheless exhibits a marked peak with a constant wavenumber
over the whole longitudinal line. However the values of the peak wavenumber are
computation-dependent, corresponding to wavelength values of 0.8W for both the
MIL and MILs simulations and 0.5W for the MILp simulation. The same length scale
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Figure 9. Longitudinal evolution of wavenumber spectra in the spanwise direction for height
z = L/4; from left to right, levels for longitudinal, spanwise and vertical velocities and pressure:
(a) MIL, (b) MILs and (c) MILp computations. Solid line isocontours correspond to spectral
densities normalized by the local spanwise variance value. Background greyscale isocontours
correspond to unnormalized spectral densities. Note that unnormalized levels have been
multiplied by a factor of 10 in plot (c) compared to plots (a, b).

of 0.5W , though less predominant, is also found in the MILp spectra of figure 9(c)
for the spanwise and vertical velocity. On the other hand the MILp pressure spectra
hardly exhibit any organization. This seems to indicate that pressure is not directly
involved in the three-dimensionalization of the flow.

Spanwise velocity spectra of simulations including span walls (second column of
figures 9(a, b) exhibit a dominant common wavelength of about 0.65W . A common
dominant wavelength is also seen in vertical velocity spectra from simulations MIL
and MILs with a value of 0.8W , similar to the one found for the streamwise velocity.
Moreover the locations of u and w spectrum maxima are very close to each other as
shown in figure 9(a, b), thus demonstrating that the spanwise modulations of these
two velocity components are related.

The fourth plots of figure 9(a, b) show that for the MIL and MILs computations
the streamwise velocity seems also to impose its dominant wavelength on the pressure
spectrum over the first quarter and the last third of the cavity. In the central region,
a shorter wavelength equal to 0.35W dominates but exhibits much lower peak values.

In addition to the collection of statistical data, time series of velocity components
and pressure have been obtained along various lines inside the cavity for both the
MILr and MILl computations. These data are useful to compute spanwise cross-
spectra and bispectra between velocity and pressure by taking advantage of the time
dimension to obtain a fully converged spectral estimator. Details on the definition of
coherence and bicoherence functions extracted from the cross-spectra and bispectra
can be found in Larchevêque et al. (2004).

The spanwise coherence spectra of figure 10 confirm that for MILES computations
including span walls the vertical velocity and, to a lesser extent, the pressure are



Large-eddy simulation of a subsonic cavity flow 119

kW/2π

C
oh

er
en

ce
2

1
0

0.2

0.4

0.6

0.8 (a) (b) (c)

2 3 4 5 6
kW/2π

1
0

0.2

0.4

0.6

0.8

2 3 4 5 6
kW/2π

1
0

0.2

0.4

0.6

0.8

2 3 4 5 6

Figure 10. Spectra of spatial squared coherence at locations: (a) (x/L =0.25, z/L = −0.25),
(b) (x/L = 0.5, z/L = −0.25) and (c) (x/L = 0.75, z/L = −0.25): · · · · · ·, longitudinal
velocity–spanwise velocity; −−−−−, longitudinal velocity–vertical velocity; − − −, longitudinal
velocity–pressure.

3(a)

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3

k 2
W

/2
π

k1W/2π

3(b)

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3

k1W/2π

3(c)

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3

k1W/2π

Figure 11. Spectra of u × u ↔ p spatial squared bicoherence with levels ranging from
0.1 (approximate threshold of significance) to 1 with incremental steps of 0.05;
(a) (x/L =0.25, z/L = −0.25), (b) (x/L =0.5, z/L = −0.25) and (c) (x/L =0.75, z/L = −0.25).
The regions corresponding to sum of wavelengths larger than the width of the cavity have
been blanked.

highly correlated with the longitudinal velocity at a wavelength equal to 0.8W . Lower
levels of squared coherence are found between streamwise and spanwise velocity at
the wavelength of 0.65W corresponding to the dominant mode of spanwise velocity
as seen in figure 9(b, c). Note that the coherence between streamwise velocity and
pressure is lower near the downstream wall than near the upstream wall, which is
further evidence that the three-dimensionality of the mean flow is not induced by the
aero–acoustic loop. In the central region of the cavity, the pressure is only moderately
correlated with streamwise velocity for the wavelength 0.35W of the locally dominant
pressure mode.

This mode nonetheless originates in an interaction between the velocity and pressure
fields but in a nonlinear way as demonstrated by the (u × u, p) spanwise bispectra
plotted in figure 11(a–c) respectively related to locations (x/L = 0.25, z/L = −0.25),
(x/L = 0.5, z/L = −0.25) and (x/L = 0.75, z/L = −0.25). It is seen from figure 11(b)
that in the centre of the cavity the squared bicoherence spectrum exhibits levels
higher than 0.5 for a quadratic interaction between the dominant velocity mode of
wavelength 0.8W and a velocity mode of lower wavelength, resulting in an energy
transfer toward the aforementioned pressure mode of wavelength 0.35W . Nonlinear
interactions exist outside the centre region (see figure 11a, c) but they weakly involve
velocity modes of lower energy content thus resulting in an indiscernible low-energy
pressure mode.
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Figure 12. Streamwise-vertical map of the normalized energy content of the dominant
spanwise mode; from left to right, levels for longitudinal, spanwise and vertical velocities
and pressure: (a) MIL computation with wavenumbers (k∗
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and (b) MILp computation with wavenumbers (k∗
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p = 2.0).

Since the overall dominant modes are clearly identified for every computation and
variable, it is of interest to consider the cavity map for the energy content of the
dominant spanwise modes. Only maps for MIL and MILp are shown respectively in
figure 12(a, b) because the MIL and MILs computations yield mostly similar results.
Despite quite different wavenumbers, streamwise velocity dominant modes exhibit a
very similar organization: maxima are found in the central region of the cavity and
up to the mixing layer at x/L = 0.6, thus explaining the pattern seen in figures 6(c)
and 7(d). The same remark holds for spanwise velocity maps except for an area near
the floor of the cavity for 0.45 � x/L � 0.7 found only for the case with bifurcation
(figure 12a).

A study of the energy content of the vertical velocity reveals more marked
differences between the computations. For the MIL computation, the location of
maximal energy matches the central zone of high levels of the dominant streamwise
mode, while for the non-bifurcated simulation MILp the respective maxima of
the vertical and streamwise modes are spatially uncorrelated. Lastly, plots of the
energy content of the dominant pressure mode show that the region in which the
interaction between the spanwise-modulated three-dimensional vortices contained in
the mixing layer and the downstream edge is the main source of three-dimensionality
for pressure. However the three-dimensionality does not radiate outside this restricted
zone. Therefore it seems unable to trigger the streamwise velocity three-dimensionality
via the Rossiter aero–acoustics loop.

To summarize the results of this section, the velocity field is modulated by spanwise
modes of almost constant wavelength over the whole cavity. These characteristic
wavelengths are altered by the bifurcation process, except for the spanwise velocity.
Simulations SMS, MIL and MILs exhibit similar streamwise modulations with a high
level of linear correlation between velocity components u and w and, to a certain
extent, pressure p, resulting in a unique characteristic wavelength for all of these three
modes. Nonlinear energy exchanges nonetheless exist between velocity and pressure
fields. They eventually yield a sustained secondary pressure mode in the central part
of the cavity.

4.3.2. Time-dependent analysis

The time series of velocity components and pressure obtained along various lines
inside the cavity for both the MILr and MILl computations have been sampled over a
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Figure 13. Time evolution of (a) streamwise velocity and (b) pressure dominant spanwise
spatial mode in the − − −, MILr and −−−−−, MILl computations at locations x = L/4 (left),
x =L/2 (centre) and x = 3 L/4 (right); for the x =L/2 plots, only curves from the MILl

computation have been drawn and they are superimposed on the time–wavenumber spectra
used to compute them.

duration of about 100 periods of the first Rossiter mode once the aero–acoustic loop
is established. This allows the identification of both the possible time modulations of
the spanwise modes and the influence of the bifurcation process on the aero–acoustic
oscillations.

These datasets are first used to check if the spanwise modulations of constant
wavelengths highlighted in the previous mean flow analysis are subject to intermittency
effects. To this end, instantaneous spanwise spectra are computed using the method
described in § 4.3.1 and are smoothed using a Gaussian temporal sliding window to
reduce statistical uncertainty. This method is applied at the three locations along the
line z = L/4 previously used in § 4.3.1.

The resulting time–spanwise wavenumber spectra at location x = L/2 are displayed
on the central plot of figure 13(a, b) respectively showing to streamwise velocity
and pressure from the MILl computation. The time evolution of the instantaneous
dominant mode extracted from the spectra is superimposed on the plots and these
curves clearly highlight two distinct regions to either side of t/TRossiter � 18. Beyond
that time, wavelengths extracted from the steady analysis (see figure 9) are recovered
though with some intermittency for the pressure. On the other hand streamwise
velocity and pressure wavelengths seen prior to that time are lower and almost
equal to each other, bearing therefore some similarities with the ones obtained when
considering the non-bifurcated MILp computation. Consequently t/TRossiter � 18 is
identified as the bifurcation time.

For clarity and brevity, only the evolution of the instantaneous dominant modes at
locations x =L/4 and x = 3 L/4 are shown on the left and right plots of figure 13(a, b)
for both MILr (dashed line) and MILl (solid line) computations. The MILl plots of
figure 13(a) demonstrate that roughly the same bifurcation time is recovered over the
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whole cavity area even for pressure at location x = L/2 despite a milder transition.
The same conclusions hold for the MILr computation though the bifurcation is
anticipated compared with the MILl simulation with t/TRossiter � 9. Focusing on the
pressure, the lack of intermittency far from the downstream corner whereas close to
it the intermittent wavelength is roughly equal to a submultiple of the full width, and
the fact that the intermittency characteristic time is less than a few TRossiter, suggest
that these features could be due to the forcing by pressure waves emitted from the
downstream edge because of the Rossiter aero–acoustic coupling.

Short-time-averaged profiles along the spanwise line (x/L = 0.5, z/L =0.25) of high
spanwise velocity variance are computed to ensure that the bifurcation found in
figure 13 is indeed related to the transition from the symmetric non-bifurcated case
to the symmetry-breaking bifurcated one. The instantaneous streamwise velocity
is averaged over 9TRossiter from the beginning of the data storage and from four
equidistant times in the bifurcated time zone. The resulting profiles are plotted in
figure 14(a, b) for the MILr and MILl computations, respectively. Comparison of the
solid line with the dotted curves, respectively related to the averaging in the first and
second time regions, highlights a dramatic change in the spanwise structure of the
flow. Moreover, the solid line of figure 14(b) clearly exhibits a symmetrical pattern
while mirrored dotted lines compare with those in figure 14(a). This demonstrates
that the bifurcation time highlighted in figure 13 is associated with the breakdown of
the symmetry of the mean flow.

The time at which the bifurcation occurs being known, it is of interest to evaluate
the potential impact of the bifurcated flow inside the cavity on the Rossiter loop by
means of a joint time–frequency analysis of the pressure. The method used to compute
the time–frequency spectrum is described in Larchevêque et al. (2004). The time step
and the width of the sliding window are chosen to ensure a frequency resolution
better than St= 0.05 according to the Gabor–Heisenberg principle of uncertainty.
Note that only MILl data are considered since this computation exhibits the largest
duration for the non-bifurcated flow.

The resulting joint time–frequency pressure spectrum is plotted in figure 15(a) with
a superimposed vertical dashed line denoting the bifurcation time identified from
the time–wavenumber spectrum analysis. The plot shows that the first and second
Rossiter modes are altered shortly after the bifurcation: their frequencies respectively
decrease and increase to reach the values observed in figure 3 that are shown by solid
horizontal lines in figure 15(a). Moreover, the harmonic of the first Rossiter mode
appears for t/TRossiter � 30 as shown by the dashed horizontal line corresponding to
the second dominant peak of figure 3. A frequency bispectral analysis confirms that
this mode originates in a quadratic interaction of the first Rossiter mode with itself.
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Figure 15. (a) Time–frequency spectrum of pressure at location (x/L =0, z/L = −0.25) from
MILl computation and (b) time evolution of peak sound pressure level for: −−−−−, first
Rossiter mode; · · · · · ·, second Rossiter mode and − − −, harmonic of first Rossiter mode
when these modes are identified in the spectrum (a). Horizontal solid lines in (a) correspond
respectively to the mean Strouhal numbers of the first and second Rossiter modes deduced
from the frequency spectrum. Similarly, the dashed horizontal is related to the mean frequency
of the harmonic of the first Rossiter mode. Vertical dashed line in (a) and (b) corresponds to
the bifurcation time at location (x = 0, z = −L/4) identified from a plot similar to the ones in
figure 13. Note that the spectrum has been computed as a spanwise average over measurement
points ranging from y = 0.2L to y = 2.2L to reduce noise level.

The instantaneous sound pressure levels of the three modes shown in figure 15(a)
are computed as the maximal value for the local peaks encountered within intervals
of width St = ±0.03 centred on the mean frequency of each mode. It is seen from
figure 15(b) that before the bifurcation the second Rossiter mode is dominant whereas
the harmonic of the first mode does not exist. These features, as well as the increased
frequency for the first mode and the reduced frequency for the second mode in
comparison with the steady bifurcated spectrum, make the non-bifurcated spectrum
similar to the steady spectrum of the MS computation seen in figure 3(c). Such features
are also shown by considering the pressure spectrum from the bifurcation-free MILp

computation.
Beyond the bifurcation time, the energy content of the first mode rises gradually

to reach a plateau close to 150 dB, the harmonic of the first Rossiter mode appearing
once the first mode has levelled. On the other hand the energy of the second mode
globally decreases while being strongly modulated over large time with an amplitude
larger than 15 dB. The regions of highly energetic second Rossiter mode, namely
20 � t/TRossiter � 25 and 50 � t/TRossiter � 70 closely match the regions exhibiting a
peak of Strouhal number equal to 0.42 in figure 15(a), resulting from a quadratic
interaction between the first and second Rossiter modes. Note that it is unlikely that
the Rossiter loop is responsible for the bifurcation since the smooth evolution of the
Rossiter modes follows the fast switching to the bifurcated configuration.

Finally, note that the pressure at frequencies of the first Rossiter mode and its
harmonics is not the only quantity altered by the bifurcation. Frequency–wavenumber
analysis not shown here for conciseness demonstrates that both vortical structures
related to the first Rossiter mode and low-frequency velocity and pressure fluctuations
are spanwise modulated by the bifurcation. While low-frequency phenomena are
almost uniformly modulated over the whole cavity, spanwise modulation of the
velocity fluctuations related to the first Rossiter mode are progressively damped
away from the downstream corner, in contrast to pressure fluctuations. It is therefore
suggested that the impingement of spanwise asymmetrically modulated vortices from
the mixing layer generates spanwise twisted pressure waves that keep their bifurcated
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form over long distances while the vortices are rapidly smoothed after entering the
cavity.

5. Conclusion
The computations carried out have clearly demonstrated that for the geometrical

configuration and the flow parameters considered in this work the spanwise asymmetry
of the mean flow originates in a bifurcation induced by the lateral walls of the cavity.
Moreover, it has been found that the branch of the bifurcation can be selected by
using a slightly non-symmetric incoming mean flow in the spanwise direction.

The aero–acoustic coupling responsible for the flow oscillations appears not to be
directly involved in the bifurcation process. This idea is supported by the experimental
visualizations of Maull & East (1963) for incompressible cavity flows with various
widths that have highlighted spanwise cells similar to those observed in the present
computations. The bifurcation, rather, emerges from an odd constraining of the
natural wavelength of three-dimensional steady modulations by the width of the
cavity. The effect of the spanwise extent on the bifurcation is beyond the scope of the
present study. It is nonetheless worth noting that spanwise correlation lengths due to
the unsteady turbulent structures in the mixing layer and the cavity are five to ten
time smaller than the spanwise length. This implies that the bifurcation process may
not be related to turbulence.

The origin of the modulations remains to be established. However it must be
emphasized that some regions with large spanwise modulations have been found to
roughly match regions which are potentially unstable to the centrifugal instability
as identified using the generalized Rayleigh criterion defined by Sipp & Jacquin
(2000). Experimental measurements by Beaudoin et al. (2004) on backward-facing
step flow, as well as low-Reynolds-number linear stability studies by Albensoeder
et al. (2001) for lid-driven cavities and Barkley et al. (2002) for backward-facing step
flows, have highlighted the role of the centrifugal instability in the generation of
three-dimensional structures in recirculating flows. However, as in the present study,
some uncertainties remain because of slight differences in the location of the potential
instability and that of the three-dimensional structures. Linear stability analysis of
the present geometrical configuration (but for a laminar flow) could help to identify
the origin of the modulations. The analysis of the bifurcation process itself by
means of such low-Reynolds-number approach could be more difficult since the MS
computation that exhibits the highest level of turbulent viscosity and consequently the
lowest effective Reynolds number reduces the strength of the bifurcation, suggesting a
possible Reynolds number dependence of this process. From a more global viewpoint,
there is a possibility that as well as cavity, bifurcations may be encountered in flows
such as the ones mentioned above where there are lateral geometrical constraints.

While not being involved in the bifurcation, the aero–acoustic coupling is altered
by the quick transition to the bifurcated state. It induces a slower modulation of the
energy content of the Rossiter modes, resulting after a few periods of oscillation in
a switch of the dominant mode and an increase in nonlinear interactions between
pressure modes. This evolution bears some resemblance to the ‘mode-switching’
phenomenon first described by Kegerise et al. (2004) that is characterized by a
competitive energy exchange between Rossiter modes over a few periods. Analogously
to the present results, the mode-switching may be caused by a transient modification
of the flow field inside the cavity. Such unsteadiness is consistent with the variation
over time of the vortex–downstream corner interaction as described by Rockwell &
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Naudascher (1979) that yields a variation in the number of vortical structures entering
the cavity and consequently results in a transient alteration of the recirculating bubble.

From an applied perspective, the sensitivity of the energy repartition among Rossiter
modes to changes in the flow field inside the cavity should be taken into account
when considering control devices, especially those of closed loop and/or active nature.
Numerically the effective Reynolds number dependence of the bifurcation could
prevent unsteady Reynolds-averaged computations or even detached-eddy simulations
characterized by a high level of added turbulent viscosity from reproducing the
bifurcation and its effect on the Rossiter loop. Therefore these kinds of method,
which are widely used in industry, could result in severely wrong predictions of the
local velocity if applied to the analysis of such bifurcated flows. Further work should
consider that point in order to clarify it.
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Tech. Rep. RT 22/00153 DAFE. ONERA (in French).

Forestier, N., Jacquin, L. & Geffroy, P. 2003 The mixing layer over a deep cavity at high-subsonic
speed. J. Fluid Mech. 475, 101–145.

Gharib, M. & Roshko, A. 1987 The effect of flow oscillations on cavity drag. J. Fluid Mech. 177,
501–530.
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Lenormand, E., Sagaut, P., Ta Phuoc, L. & Comte, P. 2000 Subgrid-scale models for Large-Eddy
Simulation of compressible wall bounded flows. AIAA J. 38, 1340–1350.

Lomb, N. R. 1976 Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci.
39, 447–462.

Mary, I. & Sagaut, P. 2002 LES of a flow around an airfoil near stall. AIAA J. 40, 1139–1145.

Maull, D. J. & East, L. F. 1963 Three-dimensional flow in cavities. J. Fluid Mech. 16, 620–632.

Rizzetta, D. P. 1988 Numerical simulation of supersonic flow over a three dimensional cavity.
AIAA J. 26, 799–807.

Rockwell, D. & Knisely, C. 1980 Observations of the three-dimensional nature of unstable flow
past a cavity. Phys. Fluids 23, 425–431.

Rockwell, D. & Naudascher, E. 1978 Review – self-sustaining oscillations of flow past cavities.
Trans. ASME: J. Fluids Engng 100, 152–165.

Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layer.
Annu. Rev. Fluid Mech. 11, 67–94.

Roshko, A. 1955 Some measurements of flow in a rectangular cutout. Tech. Note 3488. NACA.

Rossiter, J. E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and
transonic speeds. Aero. Res. Counc. R&M 3438.

Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional
compressible flow over rectangular cavities. J. Fluid Mech. 455, 315–346.

Sagaut, P. 2005 Large-eddy Simulation for Incompressible Flows – An Introduction, 3rd Edn. Springer.

Sagaut, P., Garnier, E., Tromeur, E., Larchevêque, L. & Labourasse, E. 2004 Turbulent inflow
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